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Abstract
Due to the ever-increasing wirelessly transmitted data, the development of new transmission standards and higher frequencies in the 5G 
band is required. Despite basic biophysical considerations that argue against health effects, there is public concern about this technology. 
Because the skin penetration depth at these frequencies is only 1 mm or less, we exposed fibroblasts and keratinocytes to electromagnetic 
fields up to ten times the permissible limits, for 2 and 48 h in a fully blinded experimental design. Sham-exposed cells served as negative, 
and UV-exposed cells as positive controls. Differences in gene expression and methylation due to exposure were small and not higher 
than expected by chance. These data strongly support the assessment that there is no evidence for exposure-induced damage to 
human skin cells.
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Significance Statement

Widespread adoption of 5G wireless technology and the imminent introduction of higher frequencies have intensified public concerns 
regarding its potential health effects, in particular cancer risk due to (epi-)genetic alterations. Previous studies have faced criticism for 
methodological shortcomings, including lack of blinding, temperature control, and transparent statistical methods. Our results show 
with great clarity that in human skin cells, even under worst-case conditions, no significant changes in gene expression or methyla
tion patterns are observed after exposure. These results will contribute to counteracting the uncertainties with well-founded facts. 
Beyond this, the statistical toolbox designed here can be applied to a range of other biological and medical scenarios where the ab
sence of an effect needs to be confirmed.
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Introduction
The 5G standard in mobile communications technology is being 
introduced because the amount of transmitted data is increasing. 
Currently, the roll-out of 5G takes place and frequencies of the 5G 
New Radio Frequency Range 1 (5G NR FR1) below 6 GHz are used. 
In the upcoming years, 5G NR FR2 will add on with frequencies of 
24.3–27.5 GHz and 39.5–43.3 GHz. The biological effects of electro
magnetic fields (EMF) are strongly dependent on the frequency. In 
the range up to 3 GHz the penetration depths into the skin are 
about 10 mm, in the range from 10 GHz it is 1 mm and less (1). 
The safety reference level for the general population in the range 
2–300 GHz is 10 W/m2 (1 mW/cm2), and for occupationally ex
posed persons, 50 W/m2 (5 mW/cm2) (2).

Although there are scientific studies on biological effects for fre
quencies above 6 GHz, they are heterogeneous in terms of power 
flux density, the biological model, the frequencies and the biological 

endpoints (3, 4). Since the absorption of electromagnetic energy 
takes place in the upper layers of the skin, thermal effects are par
ticularly critical. At these frequencies and with very high power flux 
densities far beyond the limits, therefore, pain and also burns may 
occur. Thermal effects also include those associated with protein 
denaturation and can cause gene or chromosome damage (5–7). 
Overall, the study results so far do not indicate any nonthermal 
damage caused by exposure to radiofrequency EMF in the fre
quency range of 3–100 GHz. The few exceptions point to experi
ments in which the methods show numerous shortcomings.

Here, we present the results of a strictly blinded, temperature- 
controlled transcriptomics and methylation study in human ker
atinocytes and human dermal fibroblasts exposed to 5G EMF at 
different frequencies (27 GHz and 40.5 GHz), power flux densities 
(1 mW/cm2 and 10 mW/cm2), and exposure times (2 h and 48 h). 
To our knowledge, this is the first study that uses state-of-the-art 
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methods like whole-genome RNA-Seq and methylation array to 
analyze the genetic and epigenetic effects of 5G NR FR2 frequen
cies on human material. These methods are complemented by a 
newly developed combinatorial technique to examine if the sig
nals were higher than expected by chance. This may serve as a fu
ture standard for lack-of-signal confirmation in “omics” data.

Experimental pipeline
The experiments were conducted in an exposure facility, which 
was characterized for cell monolayer dosimetry, and allows for 
blinded exposure and temperature monitoring (Fig. 1A,  (8)). Due 
to the heterogeneities in previous studies (3, 4), we devised a com
prehensive experimental setup and design (Fig. 1B and C) that in
cludes variations in cell type, power flux density, frequency, and 
time of exposure to 5G EMF under compensation of temperature 

increase. There are total 96 samples, with 3 technical replicates 
per experiment for exposed as well as sham-exposed cells 
(25 × 3). Additionally, 24 samples (12 HaCat, 12 HDF) were consid
ered for UV, and 5G exposure without temperature compensation 
treatment, respectively. Differential RNA expression (DE) analysis 
and differential DNA methylation (DM) analysis were performed 
on exposure category variable (exposed/sham) for each treatment 
combination. Both analyses followed the standard pipeline 
(Fig. 1D), i.e. quality control, data normalization, batch detection 
and correction, hypothesis testing to find differentially expressed 
genes (DEGs), and differentially methylated probes (DMPs). Then, 
we performed a network analysis (Fig. 1E) by mapping the result
ing genes on two gene-centric metabolic networks (Recon2 (9) and 
Recon3D (10)) and two gene level protein–protein interaction net
works (String (11) and Biogrid (12)). The connectivity of the subnet
works generated by DEGs and DMPs was compared to the 

Fig. 1. Overview of the experiment. A) Exposure facility to blinded design: Our novel exposure facility was characterized for cell monolayer dosimetry in 
60 mm petri dishes and allows for standard in vitro incubation (37 ◦C, 5% CO2) during exposure; redrawn from (8). It enables a randomized and blinded 
application of parallel sham exposure and exposure with temperature monitoring during experiments using fiber optic temperature probes. B) 
Experimental setup: One day (48 h experiments) or 3 days (2 h experiments) after seeding of the cells, experiments were started using one petri dish with 
cells and one with medium only to monitor the temperature in each incubator. C) Experimental design: Our study on transcriptomics and methylation 
under temperature-controlled conditions involves the investigation of two cell types exposed to 5G electromagnetic fields at different frequencies, power 
flux densities and exposure times. D) The summary of the pipeline used for conducting differential expression and differential methylation analysis; ∗in 
supplementary material. E) The summary of the pipeline employed for conducting network analysis. F) Combinatorial analysis: The method aims to 
detect the real query group separation (sham/exposed) of samples from other randomly generated sample groups.
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coherence of 5,000 randomly drawn gene sets to evaluate the sig
nificance of the network signal. Gene ontology (GO) enrichment 
analysis was performed to evaluate the functional importance 
of the cluster of genes that exhibited differential expression or 
methylation. The evaluation of the analysis results was accom
plished through a comparison of the quantity of significant GO 
terms that were identified. Finally, we performed a combinatorial 
analysis (Fig. 1F), i.e. under blinded conditions, we executed the 
four analyses (DE, DM, network, and GO analysis) for all possible 
query group separation of samples (called combinations). We hy
pothesized retrieval of a significant signal when the strongest sig
nal out of all combinations is the original query group separation, 
given the original separation indeed has significant differences in 
expression.

Results
The results of the various analyses, i.e. differential gene expression 
(DE), DM, network coherence, and GO enrichment analysis, differed 
only slightly. Gene expression and DNA methylation remained 

almost unchanged after exposure. Overall, the results of the differ
ent power flux densities, frequencies and exposure times, were 
very similar. Therefore, we here show a subset of the results, which 
is complemented by the supplementary material.

RNA-Seq analysis
RNA-Seq analysis of HaCat cells under 5G exposure with a power 
flux density of 10 mW/cm2 showed no clear clusters based on the 
treatment category (exposed/sham) in a multidimensional scaling 
(MDS) plot (Fig. 2A). Although some clusters based on the fre
quency and time of exposure can be seen, these clusters mainly 
reflect the segregation of samples based on nonbiological varia
bles (batches) in the experiment. In RNA-Seq analysis, batch ef
fects were compensated by incorporating the batch variable in 
the design while hypothesis testing (batches indicated in 
Dataset S1). In a heatmap representation (Fig. 2B) of gene expres
sions, no clustering of samples based on the treatment category of 
genes is seen. The DE analysis resulted in a handful of DEGs given 
in the table (Fig. 2C). Quantitative Real-Time PCR (qRT-PCR) 

Fig. 2. Visualization of results from differential expression (RNA-Seq) and its network analysis. HaCat and HDF skin cells, exposed to 5G with power 10  
mW/cm2 and UV radiation (positive controls). Figure parts from top to bottom: A) Multidimensional scaling plots; B) heatmaps; C) tables with the number 
of significant DEGs, with Benjamini–Hochberg (13) adjusted P-value ≤0.05, | log2(foldchange)| ≥ 1 for Wald hypothesis testing; D) network plots, DEGs 
were mapped to a gene-level protein–protein interaction network derived from String.
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validation was done for all 10 coding DEGs of the main experi
ments (Tables S1 and S2. A Ct range ≥29 was measured in 7 out 
of the 10 validated genes. In 21 of these 42 measurements with a 
high Ct value (seven genes in six samples), no Ct value could be de
termined at all as no amplicon was present. For the remaining 
three gene measurements, MMP23B, SULT1A3, and SULT1A4, the 
Ct values were 21 to 28. The gene expression of the exposed and 
sham-exposed samples was significantly different in only one of 
the 10 measured genes (Student’s t-test; SULT1A3: P = 0.027).

Projecting the DEGs onto networks resulted in empty subgraphs 
due to the extremely small number of DEGs that are not present in 
the network (Fig. 2D), so network analysis could not be performed 
for these cases. On the contrary, UV treatment showed clear sam
ple clustering based on the treatment in the MDS plots as well as 
the heatmaps (Fig. 2, HaCat-UV: A and B). We found 286 upregu
lated and 176 downregulated genes. Collective DEG results are 
shown in Fig. S1A. The network coherence analysis results in a 
z-score >2, i.e. coherence of the subgraph is higher than expected 
at random (Fig. S1B). The representation of DEGs projected onto dif
ferent networks can be seen in Figs. S15 and S16.

The RNA-Seq analysis for HDF cells after 5G (power flux dens
ity: 10 mW/cm2) and UV exposure gave similar results (Figs. 2 and 
S1A) with the number of DEGs slightly larger compared to HaCat, 
but not enough to assume substantial differences in gene expres
sion for 5G exposure. For UV, it resulted in a total of 760 DEGs, 
which also have a significantly higher network coherence than ex
pected at random (Fig. S1B). The volcano plots for the aforemen
tioned cases are presented in Fig. S2. The results of the 
remaining experiments, 5G exposure with a power flux density 
of 1 mW/cm2 and 5G exposure without temperature compensa
tion are shown in Figs. S1, S3, and S4. The RNA-Seq analysis of 
these experiments resulted in very low number of DEGs for all 
cases, therefore, the network coherence analysis could not be per
formed for them, except for HaCat cells exposed to 5G EMF with
out temperature compensation (Fig. S1).

The outcome of the GO enrichment analysis conducted by us
ing GOstat aligns with these findings. Concerning biological proc
esses, molecular functions, and cellular components, we 
observed higher functional significance of the DEGs for HaCat 
after UV exposure and 5G exposure without temperature compen
sation and for HDF, only after UV exposure (Fig. S12). The lists of 
10 most significant GO terms can be seen in Fig. S14. The main sig
nificant GO term lists derived from the fgsea analysis are pre
sented in Fig. S18.

Methylation analysis
Similar to RNA-Seq analysis, there are no visible clusters of sam
ples based on the treatment category (exposed/sham) in MDS 
plots as well as the heatmaps for 5G exposure with power flux 
density of 10 mW/cm2 for both HaCaT and HDF cells (Fig. 3A 
and B), and the DM analysis gave almost negligible number of 
DMPs (Figs. 3, S1A, and S5). Unlike RNA-Seq analysis, the control 
samples exposed to UV also showed no clear difference between 
exposure and sham exposure for both cell types. The remaining 
DM analysis results (5G with power flux density 1 mW/cm2, 5G 
without temperature compensation) showed no difference in ex
posed and sham exposed samples (Figs. S6 and S7). The network 
or gene ontology analysis for any of these cases could not be real
ized because of the extremely small number of DMPs (<5) found. 
Since batch correction in methylation analysis, with currently 
available methods, leads to spurious results by either inflating 
the false positives or deflating the true positives (14–16), the 

results mentioned above were obtained by performing DM ana
lysis on samples without correcting for batch effects. 
Nevertheless, we also present the results for which batch effects 
were corrected before performing the DM analysis in 
supplementary materials (see Fig. S8). Here, an inconsistent infla
tion in number of DMPs can be seen. In network analysis, where 
the power flux density is 1 mW/cm2, a slightly enhanced signal 
was apparent for HDF cells but this enhancement was not ob
served across two distinct networks (Fig. S8). These inflations are 
later nullified by the combinatorial analysis (see Fig. S9 for String 
analysis results, see Fig. S17 for Biogrid). The outcome of GO ana
lysis (numbers of significant GO terms) is consistent with the result 
of DM analysis (Fig. S12). The significant GO terms are listed in 
Fig. S14. We also conducted a parallel enrichment analysis to sim
ultaneously evaluate the enrichment of RNA-Seq and methylation 
data. The 10 most significant GO terms are listed in Fig. S19.

Combinatorial analysis
So far, we can conclude that the gene expression and DNA methy
lation remained almost unchanged after 5G exposure with tem
perature compensation, since the number of DEGs and DMPs is 
very low for all the treatments. To further solidify these findings 
and remove any biases from the earlier analyses, we performed 
a combinatorial analysis. A detailed explanation of this technique 
with examples is given in Fig. 4. If the original combination has dif
ferences in expression, the circled dot would appear significantly 
higher than other combinations. Such a signal is only noticed in 
three of the positive controls (HaCat and HDF after UV exposure, 
HaCat after 5G EMF without temperature compensation) for 
RNA-Seq, confirming the results obtained above (Fig. 4C and D). 
Since the number of DMPs obtained from DM analysis without 
batch correction is extremely low (<5), combinatorial analysis 
was not executed for it. Rather, we performed the combinatorial 
analysis on DMPs obtained from DM analysis with batch correc
tion. Again, we see that the original combinations do not appear 
significantly higher than the rest for any of the experiments, 
and in contrast to the RNA-Seq combinatorial results, the control 
samples without temperature compensation and the UV samples 
do not stand out so strongly in methylation analysis (Fig. S9). The 
GO combinatorial analysis findings are consistent with the results 
obtained (Fig. S13).

The results of the combinatorial analysis were quantified 
by finding the z-scores of the original combination against all 
other combinations. The z-scores of DEGs, DMPs (Fig. S10A) and 
their respective network coherences (Fig. S10B) are below the 
threshold value for significant differences of z = 2 for all tested ex
perimental conditions, confirming that the actual assignment of 
sham-exposed and exposed samples does not show a stronger sig
nal than expected by chance.

Discussion
Overall, the data show no indication that the gene expression and 
methylation of human skin cells were altered by the exposure 
conditions selected here. Using the combinatorial analysis for 
these low-signal data provides the chance to manifest a clear 
statement.

5G EMF exposure did not alter gene expression or 
DNA methylation profiles
RNA-Seq
The results indicate that exposure did not lead to any changes, 
particularly in gene expression. The few coding genes that were 
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found differentially expressed after RNA-Seq analysis could most
ly not be confirmed by qRT-PCR validation. As the expression of 
seven of the ten genes was very low or could not be measured at 
all using qRT-PCR, it is reasonable to assume that these DEGs 
were stochastic artifacts from the RNA-Seq analysis.

In addition to the MMP23B gene, whose altered expression 
could not be confirmed, there was also an overexpression of the 
SULT1A4 gene (also not confirmed) and an underexpression of 
SULT1A3 in the same sample set. Both SULT1A genes originate 
from the same gene family of sulfotransferase 1A. These genes 
code for enzymes that catalyze the sulphate conjugation of vari
ous substances (including hormones and neurotransmitters) 
(17). The number and length of exons is similar in all members 
of this gene family, SULT1A3 and SULT1A4 are more than 99%

homologous and code for identical proteins (18). Thus, overex
pression of SULT1A4 may compensate for the underexpression 
of SULT1A3 and would have no biological effect.

The gene expression results are consistent with literature 
data from studies on the effect of millimeter waves on the tran
scriptome of human skin cells. Habauzit et al. (19) found no 

differentially expressed genes when HaCaT cells were exposed 
to a frequency of 60.4 GHz, a power flux density of 20 mW/cm2 

for 3 h and temperature compensation. The same study group 
recently stated that the transcriptional landscape of HaCaT 
and other keratinocytes is not altered under athermal condi
tions (20). A similar study found clear effects of exposure on 
gene expression of primary dermal fibroblasts at 60 GHz and 
2.6 mW/cm2 hourly for several days (21). Therefore, it would 
be interesting to repeat this experimental design with the setup 
shown here.

It might be argued that the likelihood ratio test (LRT) is more 
suitable for the number of samples presented here, therefore, 
we performed the same analysis with LRT. The results of the 
two tests do not differ much (File S1, Fig. S11).

Methylation
The DM results do not suggest any alteration in the DNA methyla
tion profiles. The methylation data have been challenging to ana
lyze because of the increased variability within the respective 
samples due to the influence of confounding factors and 

Fig. 3. Visualization of results from differential methylation and its network analysis. HaCat and HDF skin cells, exposed to 5G with power 
10 mW/cm2 and UV radiation (Positive controls). Figure parts from top to bottom: A) Multidimensional scaling plots; B) heatmaps; C) tables with the 
number of significant DMPs; D) network plots, DMPs were mapped to a gene-level protein–protein interaction network derived from String.
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inconsistencies in the available analysis tools. Since batch correc
tion is a highly debatable topic, especially in methylation analysis 
(14–16), we opted to do the analysis with as well as without batch 
correction. For both cases, we did not find many significant genes, 
but an inconsistent inflation of DMPs from analysis with batch cor
rection. The results with batch correction seem very contradictory. 
Because of the high number of DMPs at a power flux density of 1  
mW/cm2 and almost negligible DMPs at 10 mW/cm2, no dose–re
sponse relationship could be observed.

However, it must be said here that the number of DMPs of the 
UV control also does not stand out. The reasons for this are diffi
cult to pinpoint. Altered methylation in promoter regions can lead 
to altered gene expression (22). Due to the comparatively high 
number of DEGs found in the RNA-Seq analysis, it was therefore 
reasonable to expect that there must also be a certain number 
of DMPs, although altered gene expression can also occur through 

other mechanisms, such as histone modifications or RNA-based 
mechanisms (23). The analysis of DNA methylation in this project 
is extremely sensitive and easily influenced by external factors. 
Side effects should therefore be monitored as standard in future 
studies and included in the analysis. A further recommendation 
would be to increase the number of replicates to compensate for 
the high variability of the samples.

The relationship between exposure to EMF and DNA methyla
tion is still poorly understood. In the range of frequencies investi
gated here, there are no known in vitro studies to date. Recently, 
two independent studies on the effect of exposure to 900 MHz 
on DNA methylation of keratinocytes (24) and two cancer cell 
lines (25) were published. In both studies, clear effects were found, 
but the penetration depth of the waves into the cells or the me
dium at 900 MHz is much higher (approx. 12 mm) than at the fre
quencies investigated here (∼ 0.3–0.5 mm).

Fig. 4. Visualization of combinatorial (RNA-Seq) analysis results. A) There are 12 trials in an experiment, containing one exposed and one sham-exposed 
sample each. Assuming blinded conditions, we created all possible combinations of samples (212/2 (excluding symmetric combinations)), with samples in 
their original trials. Each candidate assignment (C1, C2, …) is one combination of exposed and sham-exposed samples. DE- and network analysis were 
performed on all these query groups. Volcano plots show the number of DEGs, which are then mapped to a network (String). Here, C4 is the original 
combination, i.e. the unblinded distribution of exposed and sham-exposed samples. B) UV experiment, C1: original combination. C) Each dot represents 
the number of DEGs from each combination; one vertical block of dots represents one experiment; circled dot: original combination; dashed block: 
number of DEGs from all combinations in (A); solid block: number of DEGs from all combinations from (B), here original combination is highest. D) Each 
vertical block represents the network coherence of DEGs mapped to the network; dashed and solid block: network coherence for all combinations in (A) 
and (B), respectively; circled dot: original combination. Temp: 5G exposure without temperature compensation.
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DEGs and DMPs did not form a coherent signal in 
functional interpretations
The network analysis provides a functional interpretation of the 
DEGs and DMPs by studying their network coherences in biologic
al networks via their reaction and metabolites or via interactions. 
The network coherence of DEGs/DMPs from exposure experi
ments either did not show any significant signal or could not be 
realized due to the small number of significant genes. In 
RNA-Seq analysis, a clear statement can only be made about the 
controls. The significantly increased network coherence of the 
HaCaT temperature control and the samples after UV radiation 
indicates that various signaling pathways are stimulated, particu
larly after UV radiation. In case of DMPs from analysis with batch 
correction, network coherence of few inflated DMPs appeared sig
nificantly higher than by chance, but this enhancement was not 
observed across two distinct networks and is later nullified by 
the combinatorial analysis.

It is striking that the HaCaT cells show significant values 
in both the metabolic and protein interaction networks, while 
the HDF cells only show significant values in the protein 
network. This could be due to the fact that both cell types react 
differently to UV radiation. This has already been shown by 
other studies in which fibroblasts synthesize the enzyme 
matrix metalloproteinase-1 (MMP-1) after UV irradiation, which 
is thought to be involved in photoaging processes (26). In contrast, 
keratinocytes did not increase their MMP-1 production but instead 
secreted other proteins (interleukin-1α and interleukin-6), which 
indirectly stimulated the production of MMP-1 in neighboring 
fibroblasts.

GO enrichment analysis functions as a valuable instrument in 
evaluating the functional importance of a specific set of genes, 
such as those exhibiting differential expression or methylation, 
with respect to biological processes, molecular functions, and cel
lular components. In line with our aforementioned findings, we 
observe higher functional significance of the DEGs for HaCat after 
UV exposure and 5G exposure without temperature compensa
tion and for HDF, only after UV exposure. For the experiments, 
the analysis with DEGs cannot be performed due to the small 
number.

We also performed a parallel enrichment analysis employing 
the mitch library (27) to be able to jointly analyze the differential 
expression/methylation analysis results of RNA-Seq and methyla
tion data. The number of significant GO terms identified via mitch 
was quite volatile with no visible trend across the parameters of 
our study. Shuffling labels (“exposed”—“sham-exposed”) and re
computing significant GO terms for these null model datasets 
gave similar numbers of significant GO terms. Furthermore, 
when grouping experiments according to cell types and comput
ing the intersection of significant GO terms, these were small 
and did not point to a common biological signal like DNA damage 
and other cellular stress pathways. This analysis therefore con
firms the absence of a 5G-driven signal. The cell-type-level inter
sections of significant GO terms can be found in Fig. S19.

DEGs and DMPs did not outperform the bulk of 
data separations during combinatorial analysis
The combinatorial analysis of the gene expression data also cate
gorizes the few DEGs found in the RNA-Seq analysis in the sto
chastic probability range. In comparison to the control after UV 
radiation, it is very clear that the number of DEGs found does 
not stand out from the number of DEGs found by chance after 
variable sample combination. The combinatorial analysis of the 

batch-corrected methylation results provides further evidence 
that the number of DMPs found does not stand out from the num
ber of DMPs found by chance after variable sample combination.

Although the DMPs of two exposure conditions showed signifi
cant network coherence, this could not be distinguished from oth
er randomly generated sample combinations. This suggests that 
the methylation status of the cells was not comprehensively 
changed by the exposure. The combinatorial analysis outcomes 
of the methylation GO results show that the original combinations 
do not show any stronger than other combinations.

Conclusion
The almost complete absence of effects of exposure of human 
skin cells on the tested parameters, even at 10 times the exposure 
limits, are on the one hand very well in line with biophysical facts: 
at the frequencies tested here, the quantum energies are far too 
low to have photochemical or even ionizing effects. On the other 
hand, it shows how important it is to precisely control, document 
and, if necessary, compensate for the temperature effects caused 
by the exposure. In spite of assessments from the WHO in 2010 
(28) and the National Toxicology Program (NTP) (29), this topic is 
still prevalent in the media, in public opinion and in the political 
sphere. This is in part due to a few isolated scientific studies pro
viding opposing evidence. Due to our strong emphasis on highly 
controlled experimental conditions and our combinatorial ana
lysis, we hope to close this debate and in particular cast funda
mental doubt on the existence of possible nonthermal biological 
effects of exposure.

Materials and methods
Cell culture
Human dermal fibroblasts (HDF, Cell Applications, San Diego, 
USA) and HaCaT cells (CLS Cell Lines Service, Eppelheim, 
Germany) were obtained as a primary culture and in passage 31, 
respectively. Cells were cultured in DMEM, high glucose, 
GlutaMAXTM (Thermo Fisher Scientific, Waltham, USA) supple
mented with 10% FBS (Thermo Fisher Scientific, Waltham, USA) 
and 1% Penicillin Streptomycin (Thermo Fisher Scientific, 
Waltham, USA) in an incubator with 37 ◦C, 5% CO2 and saturated 
humidity. For each exposure experiment 120,000 HDF or 200,000 
HaCaT cells were seeded onto a 60 mm CELLBIND® Surface cell 
culture dish (Corning, New York, USA). Cells were used in pas
sages 6–7 (HDF) and 35 (HaCaT).

Exposure system and experimental design
The exposure system is described in detail by Schmid et al. (8). 
Briefly, the novel exposure system has been characterized for 
cell monolayer dosimetry in 60 mm petri dishes and allows for 
standard in vitro incubation (37 ◦C, 5% CO2, saturated humidity) 
during exposure. The system consisted of two similar incubators 
in which the exposure setups were integrated. The software al
lowed for random and blinded allocation of exposure and 
sham-exposure (Fig. 1A).

One day (48 h experiments) or 3 days (2 h experiments) after 
seeding of the cells, the dishes were transferred to the exposure 
incubators and experiments were started (Fig. 1B). All cells stem 
from one stock that was initially frozen within aliquots. The dif
ferent times for culture (1 or 3 days after seeding) were chosen 
to have all cells at the same age after thawing an aliquot/ seeding 
and be comparable at the end of exposure. Cells were exposed or 
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sham-exposed for 2 h or 48 h, with a frequency of 27 GHz or 40.5  
GHz, and a power flux density of 1 mW/cm2 or 10 mW/cm2 

(Fig. 1C). The exposure times of 48 and 2 h were based on the 
known kinetics of changing gene expression already after 2 h of 
exposure to changing environments. DNA methylation is incorpo
rated during the cell cycle which takes ∼1–2 days. The highest lev
el of DMPs would therefore be expected after 48 h of exposure. In 
all experiments, the temperature was measured continuously us
ing a fiber optic sensor.

The preliminary tests showed that the temperature deviations 
between the exposed and sham-exposed cell culture dishes occur
ring during the experiments with a power flux density of 1 mW/ 
cm2 were tolerable. In the experiments with a power flux density 
of 10 mW/cm2, the temperature increase measured in the center 
of the dish was up to 1.2 ◦C at 27 GHz and up to 1.5 ◦C at 40.5  
GHz. To minimize potential temperature effects, the internal tem
perature of the incubator in which the exposure takes place was 
reduced by manually controlling the incubator temperature so 
that an average temperature of 37 ◦C could be maintained in the 
petri dishes. To set up the incubator temperature, a single person 
was unblinded for the experiments at 10 mW/cm2 who was not in
volved in any way in processing the samples, performing the ex
periments, or analyzing the data. In these experiments, a lid 
heater was used in all four petri dishes of the two experimental 
setups to prevent condensation in the exposed petri dish and 
maintain blinding conditions. The lid heater consisted of a circu
lar copper plate (thickness 2 mm) to which two high-load resistors 
were attached. A low, adjustable direct current (<0.3 A) caused the 
series-connected resistors to heat up and transfer the heat to the 
plate, heating the lid and preventing condensation. Three tech
nical replicates per treatment combination were processed.

The transmitting power flux density or SAR showed a relatively 
high inhomogeneity within the cell monolayer (8). To keep the 
homogeneity as high as possible, it was decided to exclude cells 
outside a defined area during harvesting. As this was a comprom
ise between the highest possible homogeneity and the largest pos
sible amount of sample material obtained, the area range was 
adjusted accordingly based on the calculations of Schmid et al. 
(8). After exposure, the medium of the cell dishes was discarded 
and a template made with a 3D printer (at 27 GHz an ellipse 
with a radius of 24 mm/23 mm; at 40.5 GHz a capped circle with 
a radius of 24 mm and a distance of the capped area to the center 
of 19 mm) was applied to the outside of the bottom of the dish and 
the areas to be omitted were marked. The cells were removed ac
cording to the marking with a cell scraper and the cell monolayer 
was then rinsed twice with PBS (Gibco, Waltham, USA). As a result, 
a low deviation in the SAR value of only 3.66 dB with a cell loss of 
12% was achieved for the 27 GHz tests and only 3.35 dB with 13% 
cell loss for the 40.5 GHz tests. Since RNA yield of HDF cells was 
only sufficient for RNA-Seq analyses but not qPCR validation, 
HDF experiments were repeated once.

Two different approaches were pursued for further controls in 
addition to sham exposure. Firstly, temperature controls were 
created. Three replicates each of HaCaT and HDF cells were ex
posed or sham-exposed at 40.5 GHz and 10 mW/cm2 for 48 h with
out compensating for the temperature increase. The starting 
temperature of the medium was 37.0 ◦C in these experiments 
and increased to an average of 38.3 ◦C in the exposed samples. 
In addition, no lid heaters were used, so that the heating of the 
medium in the exposed samples led to medium condensation. 
Secondly, cells were treated with UV radiation. Three replicates 
each of HaCaT and HDF cells were exposed or sham-exposed 
with a MinUVIS analysis lamp (DESAGA, Wiesloch, Germany) at 

a wavelength of 254 nm and an illuminance of 1 mW/cm2. The 
medium was removed and collected, the cells were rinsed twice 
with PBS (Gibco, Waltham, USA) and thinly coated with 600μl 
PBS per dish. Exposure was performed without the dish lid for 
20 s, for sham exposure the dishes were stored in the dark at 
room temperature. The PBS was then aspirated, and the cells 
were layered with the previously collected medium. After 2 h in
cubation in the incubator, the medium was discarded, and the 
cells were harvested and analyzed as in the main experiments.

DNA and RNA extraction
Following exposure, the cells were immediately harvested by 
washing the remaining cell monolayer once with PBS (Thermo 
Fisher Scientific, Waltham, USA) and transferring 350μl RLT Plus 
lysis buffer (Qiagen, Hilden, Germany) to each of the dishes. In 
the case of the HDF repeated experiments, 350μl RLT lysis buffer 
(Qiagen, Hilden, Germany) was used. The cell lysates were col
lected using a cell scraper and transferring them into reaction 
tubes. The lysates were frozen at −80 ◦C until further processing.

DNA and RNA extraction was done using the DNA/RNA Allprep 
Mini Kit (Qiagen, Hilden, Germany) or the RNeasy Mini Kit (Qiagen, 
Hilden, Germany) according to the manufacturer’s protocol. 
Briefly, DNA, RNA, and waste materials were separated using sil
ica membrane columns. DNase digestion was done by integrating 
the RNAse-Free DNase Set (Qiagen, Hilden, Germany) into the ex
traction procedure. After separating and washing the nucleic 
acids with several buffers and centrifugation steps, DNA was 
eluted using EB buffer (Qiagen, Hilden, Germany) at 70 ◦C which 
was incubated on the column for 2 min. RNA was eluted using 
RNase-free water which was incubated on the column for 10  
min to increase RNA amount.

RNA-Seq
A total of 96 RNA samples from the main experiments and 24 RNA 
samples from the controls were sent to IMGM Laboratories 
(Martinsried, Germany) for analysis of gene expression. The sam
ples were first tested for integrity using the 2100 Bioanalyzer 
(Agilent Technologies, Waldbronn, Germany) with RNA Nano 
LabChip kits (Agilent Technologies, Waldbronn, Germany). If the 
integrity was sufficiently high (RIN value >7.0), the samples 
were used, otherwise the experiment was repeated and the new 
samples were sent in.

The transcriptome library was generated using TruSeq® 

Stranded mRNA technology according to the manufacturer’s 
protocol (Illumina, San Diego, USA). It included fragmentation, 
poly-T-oligo pulldown, and sequencing adapter ligation. The 
NovaSeq® 6,000 Next Generation Sequencing System (Illumina, 
San Diego, USA) was used for RNA sequencing. After excluding 
reads from low quality clusters which did not pass quality criteria, 
the total number per sample was 14.1 +/− 3.9 million reads. The 
resulting reads were trimmed to 75 bp and mapped against the 
human reference genome using CLC Genomics Workbench 
20.0.4 (CLC bio, Qiagen, Hilden, Germany). A proportion of 13.9 
+/− 3.9 million reads could be mapped to the reference genome 
which is 99.05 +/− 0.29 %. Values are given as means +/− standard 
deviation.

DE analysis
We extracted total exon reads for each sample from the read 
counts data received from IMGM. Then, we adjusted the raw 
counts to enable direct comparison of samples by normalization. 
In RNA-Seq analysis, normalization of data is an important step 
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which needs careful assessment (30, 31). Main assumptions for 
the choice of normalization by distribution are (32): (a) Most genes 
are non-DEGs (differentially expressed genes). (b) Technical vari
ation is the same for DEGs and non-DEGs. (c) The differential ex
pression is symmetric across conditions and there is no global 
shift. These assumptions are in line with our experimental expect
ations; therefore, we choose normalization by distribution 
(DESeq2 normalization (33, 34)) which equilibrates expression lev
els for non-DEGs. We visualize the results by density plots created 
using geneplotter::multidensity function in R. When the sample 
distributions do not overlap, we perform within lane normaliza
tion to remove the GC content bias of the genes using EDASeq 
(35). After normalization, we check for the presence of batch ef
fects in the data. Batch effects are nonbiological variables in the 
experiments that, if not adjusted/corrected, can result in spurious 
results, e.g. the effects encountered in (36, 37) which were later ad
dressed in (38, 39). To detect the batches, we calculate correlations 
between variation in the data (principal components) and the co
variates using DEGreport::degCovariates function, and visualize it 
using SVD plots using ggplot2. Batch effect correction is one of the 
most debatable steps in DE analysis. Two primary ways of dealing 
with batch effects are (14): (a) Adding batch as a covariate in the 
statistical model design of the analysis. (b) Removing batch effects 
from the read counts and then performing the statistical analysis. 
For our study, we choose the first approach for the following rea
sons: (i) Authors of DESeq2 and other similar tools suggest using 
the first approach for statistical analysis and second to visualize 
batch corrected data (in DESeq2 package vignettes and 
Bioconductor support: https://support.bioconductor.org/p/ 
121408/). (ii) DESeq2 requires integer counts as input, while 
most batch correction tools return noninteger values except 
Combat-seq from SVA, and some studies (14) have suggested 
that correcting for batch effects by Combat-seq can induce false 
positives by inflating the F-statistics of query analysis. To visual
ize clustering of samples, we use MDS plots (limma::plotMDS) 
and heatmaps with samples and genes clustered hierarchically 
according to average linkage (stats::as.dist, stats::hclust). Next, 
we perform the statistical analysis to find differentially ex
pressed genes between two study groups. We use the robust 
and powerful tool DESeq2 (34) for the statistical inference 
which uses the negative binomial distribution while accounting 
for inherent variability of RNA-Seq data. Parameters for 
genes to be significantly differentially expressed are: adjusted 
P-value ≤0.05, | log2(foldchange)|≥1 for Wald hypothesis testing. 
DEGs are finally visualized using volcano plots using ggplot2.

qRT-PCR validation
The differentially expressed coding genes which were identified by 
RNA-Seq analysis were validated by qRT-PCR, read-through tran
scripts and other noncoding sequences were excluded from the 
analysis. In addition, the amplification of three reference genes 
was measured in each sample to normalize the data accordingly. 
The selection of reference genes was based on known genes that 
were found to be suitable for both HaCaT and HDF cells (40, 41).

RNA samples were reverse transcribed using the QuantiTect 
Reverse Transcription Kit (Qiagen, Hilden, Germany) according 
to the manufacturer’s protocol. Briefly, 1 μg RNA was treated 
with gDNA Wipeout Buffer and then reverse transcribed using 
the kit’s oligo-dT and random primer mix. The cDNA was diluted 
1:5 with RNase-free water and stored at −80 ◦C.

The qRT-PCR was performed using the QIAquant 96 5plex qPCR 
Cycler (Qiagen, Hilden, Germany) and the QuantiNova LNA PCR 

Kit (Qiagen, Hilden, Germany). The efficiency of the 13 
QuantiNova LNA PCR assays used was determined by measuring 
standard curves (Table S1). Seven of the ten target genes were 
only slightly expressed (Ct value ≤29), so that the standard curves 
were partly generated with the amplification products of qPCR 
(reamplification). According to the manufacturer’s protocol, the 
QuantiNova SYBR Green PCR Master Mix (Qiagen, Hilden, 
Germany) was mixed with the QuantiNova LNA PCR assay to be 
measured (Qiagen, Hilden, Germany) and RNase-free water and 
distributed in white PCR plates for qPCR (Brand, Wertheim, 
Germany). 2 μl of each cDNA sample was added and the measure
ment was performed with the qPCR cycler according to the follow
ing program: 2 min at 95 ◦C, 45 cycles of 5 s at 95 ◦C and 10s at 
60 ◦C. Following the last cycle, a melting curve of the amplification 
product was generated to detect any unspecific products.

The qRT-PCR validation data, corrected for assay efficiency and 
normalized to the three reference genes, were determined using 
the ΔΔCt method (42). The gene expression of the samples was 
tested for significant differences between exposure and sham ex
posure/treatment using Student’s t-test.

Methylation
A total of 96 DNA samples from the experiments and 24 
DNA samples from the controls were sent to IMGM Laboratories 
(Martinried, Germany) for analysis of methylation. To ensure 
quality, the concentration of the DNA was determined using the 
Qubit® dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, 
USA) in comparison to a standard contained in the kit. The gen
omic DNA was then modified by bisulfite conversion. For this pur
pose, the EZ DNA MethylationTM Direct Kit (Zymo Research, 
Freiburg, Germany) was used according to the manufacturer’s in
structions. The modified DNA was denatured and neutralized us
ing the Infinium HD Assay for Methylation (Illumina, San Diego, 
USA) according to the manufacturer’s protocol. It was amplified 
and precipitated with isopropanol after enzymatic fragmentation. 
The DNA was resuspended and hybridized to the Infinium 
Methylation EPIC arrays (Illumina, San Diego, USA). The primers 
on the BeadChips were extended with labeled nucleotides com
plementary to the DNA sample. The hybridized DNA was re
moved, and the labeled, extended primers were stained and 
dried. Fluorescence was measured using the iScanTM system 
(Illumina, San Diego, USA).

DM analysis
For methylation analysis, we opt for a comprehensive package 
ChAMP (43) in R for an integrated methylation analysis. The raw 
intensity files were imported with minfi method (44, 45) using 
champ.load() function. Preprocessing of the data was done by fil
tering out probes with detection pvalue >0.01, bead count <3 in at 
least 5% samples, overlapping with SNP sites (46), overlapping 
with multiple locations on human genome or aligned to X/Y 
chromosome. The intensities are imported to beta values ranging 
from 0 to 1. After filtering the probes, we normalize the beta values 
by using Quantile (47) + BMIQ (Beta-Mixture Quantile)(48) normal
ization. QN+BMIQ normalization has been found highly reliable 
for microarray data (49–51) including DNA methylation protocols 
by Illumina (52). It focuses on transforming the distribution of 
Type II probes to be similar to Type I probes. After normalization, 
batches are detected by visualizing correlations between principal 
components and covariates using singular value decomposition 
(SVD) plots (53). The detected batches are removed using champ.
combat() which uses combat method from SVA package (54, 55). 
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The findings in various studies (14–16) suggest that batch correc
tion by combat, while preserving the query group differences, can 
result in inflation of F-statistics and false positives, therefore we 
filter out artifacts as strong isolated signals not discernible with
out batch corrections. Batch corrected data is then statistically 
analyzed to find DMPs using limma (56, 57) with multiple testing 
correction (Benjamini–Hochberg (1995) (13)) threshold: adjusted 
pvalue ≤0.05, and | log2(foldchange)| ≥ 0.1.

Network analysis
To investigate the network coherence of the differentially ex
pressed/methylated genes in the context of biological networks, 
we employed two gene-centric metabolic networks (Recon2 (9) 
and Recon3D (10)) and two gene-level protein–protein interaction 
networks (String (11) and Biogrid (12)). Our focus was on the effect
ive subnetworks, which represent the projections of differentially 
expressed/methylated genes onto the employed gene-centric 
metabolic network or gene-level protein–protein interaction net
work. We conducted a comprehensive analysis of network coher
ence on these subnetworks, by thoroughly assessing whether the 
network coherence happens to be greater or lower than expected 
at random.

Gene-centric metabolic network construction
We extracted gene-centric metabolic models (GCMNs) from the 
Recon2 (9) and Recon3D (10) human metabolic network models 
following the methods described in Refs. (58–61). In GCMNs, nodes 
represent genes and edges represent the associations of genes via 
metabolic reactions. Stated differently, a connection between two 
genes is established if the metabolic reactions associated with 
these genes share a common metabolite.

The primary exchange metabolites, namely ATP, ADP, CO2, H, 
NAD, NADH, among others, are the most highly connected 
metabolic species that are unlikely to establish links between 
genes with similar metabolic functions, leading to an artificially 
denser metabolic network (62–64). In order to mitigate this effect, 
we opt to remove a subset of metabolites that represent the top 2% 
of the most highly connected metabolites, prior to network 
construction.

The resulting gene-centric metabolic network obtained 
through the utilization of the Recon2 human metabolic network 
model has 1,806 nodes and 31,699 edges. Similarly, the one ex
tracted from Recon3D has 3,449 nodes and 233,235 edges.

Gene-level protein–protein interaction network construction
We perform our analysis using two different protein–protein 
interaction networks on gene-level (GPINs) derived from String 
(11) and Biogrid (12) protein–protein interaction databases.

To construct GPIN derived from the String database, we select
ively included protein interactions associated with the human or
ganism, and only the ones with a score exceeding 850 to include 
solely direct interactions. We then cross-referenced the protein 
IDs with associated gene IDs using the Ensembl database (65). 
The GPIN is depicted as a graph, with genes serving as nodes 
and the edges representing the associations between the genes 
through protein interactions. Notably, the graph has 12,468 nodes 
and 139,560 edges.

The GPIN derived from the Biogrid database is constructed fol
lowing the methodology explained above without any filtration of 
interaction scores. The graph consists of a total of 21,797 nodes 
and 1,018,531 edges.

ID mapping
We employed the Python mygene package to map gene names to 
both Entrez IDs and Ensembl IDs, for the purpose of performing 
GO and network analyses, respectively. In instances where mul
tiple hits are identified, meaning that a singular gene name may 
correspond to multiple IDs, all of the mapped IDs were included.

Network coherence
The differentially expressed/methylated genes were projected 
onto the network employed to extract the effective subnetwork. 
The coherence value of a subnetwork was determined by the ratio 
of nonisolated genes to the total number of genes that exist within 
the network. The analysis was only performed if the number of 
differentially expressed/methylated genes was greater than or 
equal to 5.

To obtain the null distribution of coherence values, 5,000 gene 
sets, each being equivalent in size to the effective subnetwork, are 
randomly drawn from the employed network, and the coherence 
values of these randomly drawn subnetworks were subsequently 
calculated. The z-score of the coherence of the effective subnet
work was then determined utilizing this distribution.

GO enrichment
GO enrichment analysis serves as a valuable tool to assess the 
functional significance of a particular collection of genes, such 
as those that are differentially expressed or methylated, in rela
tion to biological processes, molecular functions, and cellular 
components. In order to determine statistical significance, a hy
pergeometric test is conducted to evaluate whether any observed 
enrichment of GO terms in the gene list is statistically significant. 
This test determines whether any GO terms are over-represented 
or if the number of selected genes associated with a particular 
term is greater than expected.

We conducted the GO enrichment analysis using GOstats (66), a 
package available in R through Bioconductor, when the number of 
differentially expressed or methylated genes is greater than or 
equal to 5. The org.Hs.eg.db database (67), which serves as an 
organism-level package utilizing a central gene identifier, namely 
the Entrez gene ID, and encompasses mappings between this 
identifier and various other types of identifiers, specifically GO 
terms, was utilized as the background gene list for this analysis. 
The terms associated with fewer than five genes were discarded. 
This database comprises 20,692 genes and 18,348 GO terms, 
with the filtered database yielding 7,349 GO terms when the size 
threshold was established at a minimum of five genes: 5,029 
Biological Process (BP), 920 Cellular Component (CC), and 1,400 
Molecular Function (MF).

We used the Benjamini–Hochberg method (13) for multiple test 
corrections, i.e. to calculate adjusted P-values, since the analysis 
output consists of only P-values. We assess the analysis outcomes 
by comparing the number of significant GO terms identified with 
an adjusted P-value threshold of 0.05.

Since functional class sorting was reported to be more sensitive 
than over-representation analysis (68), we also conducted a fast 
preranked gene set enrichment analysis using the fgsea library 
(69) for the RNA-Seq data. Gene ontology biological process gene 
sets, obtained from the Molecular Signatures Database (MSigDB) 
(70), were used as background gene set with a minimum gene 
set size threshold of five. The ranking metric was the stat value, 
corresponding to the t-statistic provided in the output of the 
DESeq2 analysis.
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Additionally, we executed a parallel enrichment analysis of the 
RNA-Seq and methylation data employing the mitch library (27). 
The same background gene set was utilized once more, with the 
minimum set size threshold maintained at 5. For ranking, t-statis
tics provided in the output of the ChAMP analysis was used.

The combinatorial analysis was performed using the GOstat 
package.

Combinatorial analysis
Considering the experiment to be strictly blinded (meaning that 
the data analysts were blinded until writing this manuscript), we 
devised a method that aims to detect the real query group separ
ation (sham/exposed) of samples from other randomly gener
ated sample groups by combinatorics. We have 24 samples in 
each experiment, divided into 12 trials containing one sham 
and one exposed sample. Without knowing which sample is 
sham or exposed, we create all possible combinations (212) of 
samples such that each trial consists of one sham and one ex
posed sample. Then, we perform the differential expression/ 
methylation analysis by putting each possible sample-grouping 
as the model design in the statistical analysis. This yields a com
pilation of lists of differentially expressed/methylated genes for 
all groupings.

This study investigated two signals that were derived by con
ducting combinatorics: (i) the number of differentially ex
pressed/methylated genes and whether the original grouping of 
sham and exposed samples display a stronger signal than ex
pected at random, i.e. the z-score of the number of differentially 
expressed/methylated genes and (ii) the network coherence of 
those differentially expressed/methylated genes (the z-score) 
and the strength of this signal with respect to other randomly gen
erated sample groupings (the z-score of z-scores).

The resulting signal strengths are investigated for all possible 
groupings where the original grouping is expected to display the 
strongest signal under the assumption that the original grouping 
has significant differences in expression/methylation.
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