bioRxiv preprint doi: https://doi.org/10.1101/2023.09.02.556045; this version posted September 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Memorability shapes perceived time (and vice versa)

Alex Ma!, Ayana Cameron!, and Martin Wiener!

!George Mason University

Abstract

Visual stimuli are known to vary in their perceived duration. Likewise, some visual stimuli are also known to linger for longer in
memory. Yet, whether or not these two features of visual processing are linked is unknown. Despite early assumptions that time
is an extracted, or higher-order feature of perception, more recent work over the past two decades has demonstrated that timing
may be instantiated within sensory modality circuits. A primary location for many of these studies is the visual system, where
duration sensitive responses have been demonstrated. Further, visual stimulus features have been observed to shift perceived
duration. These findings suggest that visual circuits mediate or construct perceived time. Here, we present across a series of
experiments evidence that perceived time is affected by the image properties of scene size, clutter, and memorability. More
specifically, we observe that scene size and memorability dilate time, whereas clutter contracts it. Further, the durations of
more memorable images are also perceived more precisely. Conversely, the longer the perceived duration of an image, the more
memorable it is. To explain these findings, we applied a recurrent convolutional neural network (rCNN) model of the ventral
visual system, in which images are progressively processed over time. We find that more memorable images are processed faster,
and that this increase in processing speed predicts both the lengthening and increased precision of perceived durations. These
findings thus provide a new avenue in vision research towards the study of perceived image durations as means of explaining
visual system responses.

Introduction

Time is an intrinsic feature of sensory perception. Indeed, all sensory processes must unfold over time. Yet,
“time” in itself is a rarely studied feature of perceptual processing. That is, how do we perceive its passage,
and how does its passage influence the processing of other features? This presents both a missing aspect
of our models of neural functioning and an opportunity for future research: how is time instantiated within
sensory processing hierarchies. Early research on the study of time focused on amodal properties of its
perception. That is, with no dedicated sense organ for time, the study of interval timing instead focused on
time as a higher order property of perception and cognition (van, 2009).

Within psychology, the dominant model for studying time has been Scalar Expectancy Theory (SET;(Gibbon
et al., 1984)), later expanded with the Attentional Gate Model (AGM) of time (Block & Zakay, 1997). Both
models assume a pacemaker-accumulator framework, in which clock-unit “ticks” are accumulated until a
given threshold. Yet, despite the support of SET and AGM for describing a variety of behavioral features of
timing in humans and animals, work conducted throughout the 2000s and 2010s began to reveal perceptual
biases that could not be explained by these models. Specifically, the sensory properties of timed stimuli
altered their perceived duration. Early work in this regard demonstrated that the general magnitude of a
stimulus influenced time in a linear manner: “larger” magnitude stimuli, such as size, brightness, loudness,
number, numerosity, and speed led to “longer” perceived intervals (i.e. time dilation; (Matthews & Meck,
2016)). A possible explanation for time dilation effects is that these stimuli drew more attention to them
as a consequence of their magnitude (Tse et al., 2004), yet this explanation lacks validity in the AGM
model, which would predict that such magnitudes would act as a distraction away from time, and so should
lead to opposite distortions (i.e. time contraction). Explanations for these findings included a generalized
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“magnitude” system in the brain (Walsh, 2003), with time being just one aspect, and a basic “energy-
readout” model in which stimuli that elicited more activity led to longer intervals (Eagleman & Pariyadath,
2009). Yet, further studies revealed findings inconsistent with these accounts, in which time was dilated
by other features, such as a visual stimulus’s color, flicker-rate, or spatial frequency, all of which were non-
monotonic (Aaen-Stockdale et al., 2011; Bruno & Cicchini, 2016). Further, stimuli of less magnitude could
be perceived as longer if the context of an experiment was changed (Matthews et al., 2011). Inter-modal
effects also existed, such that visual stimuli were generally perceived as briefer than auditory stimuli of
the same duration (Allman et al., 2014). “Higher-order” visual stimuli also dilated time, including body
motion (i.e. upright human point-light walkers are perceived to last longer than inverted or scrambled
walkers; (Wang & Jiang, 2012), emotional content (i.e. emotional faces and frightening images are longer
than neutral faces/images; (Lake et al., 2016)), and scenes (i.e. images of scenes are perceived as longer
than scrambled scenes; (Varakin et al., 2013)). For these latter stimuli, an important distinction is that
it is their specific content, not their complexity, that dilates time; indeed, white noise patterns of differing
complexity fail to have any impact on perceived duration (Palumbo et al., 2014).

Extending the results from above, two models have attempted to explain how these effects emerge. The
first, proposed by (Ahrens & Sahani, 2011), suggested that the brain develops a Bayesian prior for dynamic
stimuli that matches the time-varying statistical structure of the environment. That is, natural images
(i.e. movies) typically display a 1/f power spectrum in their variation, which allows for predictions of
how a typical scene will unfold over time. As such, the brain can exploit this variation to provide a
“readout” of time based on sensory change from one moment to the next. A prediction of this model is
that dynamic stimuli that contain 1/f spectra will be perceived better (e.g. more precisely) than stimuli that
lack this structure. Several experiments demonstrated this effect using moving “cloud” stimuli where the
1/f structure could be controlled. The second model, proposed by (Roseboom et al., 2019), also provided
a change-detection account, but without any assumed prior, and instead presumed that the perception of
time arose by measuring relative momentary differences between successive video frames. A prediction of
this model was that movies containing more changes (e.g. a busy city street) should lead to longer time
estimates than those with less change (e.g. an empty field). This prediction was confirmed in experimental
data from human observers. = The work described above, when applied to the visual system, suggests a
hierarchy of time dilation effects. That is, a variety of features from low to high level have been found to
influence perceived duration. Yet, the majority of time dilation effects have involved lower-levels of the
hierarchy, manipulating simple features such as size, contrast, color, etc. Further, many of these effects have
favored stimulus manipulations selective to the dorsal visual stream. Yet, stimuli putatively driven by the
ventral stream can also dilate time (Cicchini, 2012), which may be driven by their semantic content, rather
than low-level sensory features (Varakin et al., 2013; Sudrez-Pinilla et al., 2019). However, previous research
using high-level visual images (Cardaci et al., 2009; Varakin et al., 2013; Folta-Schoofs et al., 2014) did not
account for semantic properties.

As a means of studying the visual system, one fruitful approach is to employ the use of artificial neural
networks (ANNs). ANNSs, which may be divided into either recurrent (RNN) or convolutional (CNN) types,
have shown great promise over the past decade for modeling neural processes, providing both insights and
predictions regarding a variety of sensorimotor phenomena. CNNs in particular have been used both as
a means of providing superior image recognition and classification, and as a model of the visual system.
For the study of time perception, both RNNs and CNNs have been employed to great effect (Goudar &
Buonomano, 2018; Bi & Zhou, 2020). Going forward, we focus here on CNNs due to their link back to the
visual system. Notably, only one CNN has been linked to time perception (Roseboom et al., 2019; Sherman
et al., 2022; Fountas et al., 2022). Specifically, in the study of Roseboom and colleagues (2019), where
movies of city scenes were judged longer than outdoor nature scenes, the authors employed a CNN model
(AlexNet) in which, at each layer, the Euclidean distance between activation patterns at successive frames
was measured and marked as a “change” if it exceeded an adaptive threshold (T) based on the mean number
of previous changes. These values were then regressed against the true durations for each of the videos with
a support vector machine so as to provide predicted durations for a given input. After training, the model
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produced the same biases as human observers.

The application of the CNN to human timing data by Roseboom and colleagues has shown the success of
using such an approach. Yet, despite this success, less insight has been gained towards a holistic model of
how the visual system encodes time. Indeed, change-detection algorithms have been proposed before for
studying time perception (Fraisse, 1984; Poynter & Homa, 1983; Brown, 1995), yet can only accommodate
a limited number of findings (Liverence & Scholl, 2012; Bruno et al., 2012). The work here therefore seeks
to further examine the nature of timing effects on the visual system, with a particular emphasis on ventral
stream selective processes.

Results

Perceived Time is Influenced by Scene Size and Clutter in Opposite Directions

To begin, we tested an initial group of human subjects (n=52) on a temporal categorization task (Figure
1A), in which they were presented with images for a set of six possible durations on a given trial (log-spaced,
between 300 and 900ms). For each image, subjects were required to classify the presented image into
“long” and “short” duration categories via a button-press as quickly yet as accurately as possible. We
gave subjects no instructions regarding the images themselves, asking them only to attend to the durations
they were presented. For this experiment, the images we used were drawn from the Size/Clutter database
built and described by (Park et al., 2015) (see Methods). These images represent a series of scenes with
normed responses across participants for ratings of scene size or clutter. By example, a scene with a
small size but high clutter may be a full pantry, whereas a large size but low clutter scene may be an
empty warehouse. The scenes were presented across six levels of size and clutter, for a total of 36 possible
combinations (Figure 1B). The data were analyzed via a generalized linear mixed model approach in which
the scene size and clutter levels, along with presented duration, were fixed effects and subject was a random
effect. Here, we observed an effect of both scene size and clutter, such that models with these terms
outperformed models without them [Scene Size: x2=99.37, p<0.001; Clutter: x?=5.94, p=0.015]. Strikingly,
the direction of each effect moved in opposite directions; Scene size led subjects to categorize stimuli as “long”
more often [3=0.055, 95% CI: 0.044 — 0.065], whereas clutter led subjects to categorize stimuli as “short”
more often [5=-0.044, 95% CI: -0.079 — -0.008] (Figure 1B). Additionally, we observed an interaction
between presented duration and clutter [x?=4.772, p=0.029]. Notably, the slope of this interaction was
positive [=0.067, 95% CI: 0.006 — 0.127], such that the slope of the psychometric function was higher
for larger levels of clutter (Moscatelli et al., 2012); thus, despite the bias to classify the duration of more
cluttered images as “short”, subjects are more precise in their classifications. No such interaction was
observed for scene size.

The results of the first experiment consequently showed that scene size and clutter could push perceived
duration into two separate directions. We note that this finding goes against a simple attentional explanation,
unless one were to suggest a more complicated explanation that scene sizes draw more attention than
scene clutter, which decrease attention with greater clutter. Likewise, a magnitude-based effect cannot
explain these findings, as both scene size and clutter are larger magnitudes. To further validate these
effects, we collected a replication dataset in a new group of subjects (n=>50). As an additional control,
the images presented were set to grayscale and normalized for luminance (see Methods), to ensure the
results were not due to low-level differences in the intensity of the image. Once again, we observed a
significant effect of including both scene size [x?=9.497, p=0.002] and clutter [x?=8.6, p=0.003] in our
model, with scene size pushing stimuli to be classified as “long” more often [$=0.017, 95% CI: 0.005 —
0.028] and clutter pushing stimuli to be classified as “short” more often [3=-0.018, 95% CI: -0.029 —
-0.006]. However, a model including an interaction between duration and clutter did not significantly
improve the fit [x?=0.047, p=0.826], thus failing to replicate the effect of clutter on precision.
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Figure 1: Scene information shifts perceived time. A) Schematic for the temporal categorization
task; on a given trial (i) subjects viewed a fixation point followed by an image for one of six possible
durations between 300 and 900ms. After the image disappeared, subjects were required to classify the
image duration as “long” or “short” as quickly yet as accurately as possible, after which the next trial (i+1)
began immediately. B) Scene size was varied across six levels and was observed to dilate perceived time,
such that subjects were more likely to categorize larger scene size images as “long”. Example psychometric
functions are presented for two subjects from Experiment 1 (top) and 2 (bottom). C) Scene clutter was
also varied across six levels and was observed to contract perceived time, such that subjects were less likely
to categorize more cluttered images as “long”. Example psychometric curves from two subjects are again
presented for Experiments 1 (top) and 2 (bottom). Curves were fit using the psignifit 4.0 toolbox and are
presented here for visualization purposes only.

Memorability Lengthens Perceived Time

The results of the first two experiments demonstrated that semantic details of scenes can shift perceived
time in different directions, depending on the type of information conveyed. These findings could not be
explained by simple magnitude or attention-based theories, nor by differences in low-level features of the
images. So, why do these images affect time in different ways? We return to this question in the discussion,
but note that the richness of scene images provides a number of distinct cues, many of which are perceived
immediately. Beyond features such as size or clutter, an additional feature of images is their intrinsic
memorability, or the probability that they will be recalled later (Khosla et al., 2015; Rust & Mehrpour,
2020). Numerous studies have investigated features that give rise to memorability, noting that it is a unique
property of images that operates independent of attention (Rust & Mehrpour, 2020). One possibility, then,
is that memorability affects perceived time. To explore this possibility, we conducted a third experiment
on a new set of subjects, in which subjects categorized the duration of images that varied according to
their memorability ratings. Images were uniformly drawn from the Large-Scale Image Memorability dataset
(LaMem) across all memorability scores and divided into seven equally-spaced bins from high (1) to low (7)
in memorability ratings (Figure 2A).

Psychometric functions were constructed for the responses proportions for each tested duration, from which
the bisection point (BP), defined as the duration at which subjects were equally likely to classify the interval
as “long” or “short”, and the coefficient of variation (CV), defined as half the difference between upper and
lower thresholds divided by the BP, were calculated (see Methods). A repeated-measures ANOVA of BP
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values found a significant effect of memorability [F(6,150)=3.467, p=0.003, n*,=0.122], which was observed
to be linear in nature such that subjects were more likely to classify intervals as “long” for more memorable
images [t(150)=3.827, p<0.001] (Figure 2A,B). Surprisingly, for the CV, we also detected a significant effect
of memorability [F(3.738,97.99) = 2.653, p = 0.041, n?, = 0.093] that was also linear in nature, such that
more memorable images were also classified with better precision [t(156)=2.643, p=0.009] (Figure 2C).
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Figure 2: Memorability dilates perceived time. Subjects were presented with stimuli drawn from
the LaMem dataset which varied by their memorability ratings and divided into a set of 7 bins from low
(7) to high (1). A) In a temporal categorization task, subjects were more likely to categorize images with
higher memorability scores into the “long” duration category. Panel A displays psychometric functions
from an example subject; Panel C) left displays average bisection points across the seven memorability
bins. Additionally, subjects were more precise at categorizing the durations of higher memorability ratings,
as evidenced by reduced coefficient of variation values (Panel C top right). B) In a temporal reproduction task
(separate subjects), subjects reproduced longer durations after having encoded higher memorability images;
data are shown from an example subject. C) Bottom panels display the measurement (left) and production
(right) noise as derived from a Bayesian Observer model fit to subject responses, in which measurement
noise is additionally shown to be reduced for higher memorability images.

Perceived Time Increases Memorability

The results of Experiment 3 demonstrated, strikingly, that more memorable images are both perceived as
longer than less memorable ones and more precisely. That is, an intrinsic aspect of these images that allows
them to be better recalled is also responsible for dilating the duration which they are presented for. Yet,
this relationship is correlational in nature, and so the directionality of the effect is unknown (Figure 3A). To
pose the question clearly: do these images last longer because they are more memorable, or are they more
memorable because they last longer? Indeed, previous research has shown that the duration for which an
image is objectively presented increases the likelihood that it will be remembered (Potter & Levy, 1969;
Potter, 2012; Wichmann et al., 2002), yet whether a subjectively longer image is thus recalled better is not
known. Evidence of such a relationship would differ from a magnitude-based explanation; for example,
larger stimuli are commonly perceived as lasting for a longer duration, but presenting a stimulus for a longer
duration does not make it appear larger.

To test this hypothesis, we had a new set of subjects perform a temporal reproduction task using the same
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memorability images from Experiment 3 (Figure 3A). In this task, subjects were presented with images
from the memorability image set for a random interval between 500-1000ms, and then required to reproduce
that interval by pressing and holding a response key for the same interval. We chose a reproduction
task here for two reasons: 1) to replicate the findings of Experiment 3 but in a different task, and 2) to
obtain a continuous, rather than categorical, estimate of perceived duration. The result of this initial
task replicated the findings of experiment 3; a linear mixed model of reproduced durations was significantly
improved by adding the memorability score of the image [F'=9.567, p=0.002], with higher memorability
scores associated with longer duration estimates [$=0.032, 95% CI: 0.011 — 0.052]. As an additional
measure, we decomposed reproduced duration estimates with a Bayesian observer model, in which the
measurement of durations on each trial are conceived as draws from a noisy Gaussian distribution that scales
with the interval duration. These estimates are then combined optimally with a uniform prior distribution
of presented durations to form a posterior estimate, which is then further corrupted by motor production
noise in the reproduction phase (Jazayeri & Shadlen, 2010; Remington et al., 2018; De et al., 2021; De et
al., 2023). Fitting this model to single-trial responses yields an estimate of both the measurement and
production noise widths. Here, we observed that the measurement noise decreased for images from higher
memorability bins [F(3.804,68.476)=2.611, p=0.045, n?,=0.127] in a linear manner [¢(108)=2.163, p=0.033],
while no effect was found for production noise [F'(4.728, 89.829)=0.465, p=0.791]. Thus, a similar effect of
memorability on the CV of Experiment 3 was also observed for the measurement error of Experiment 4.

Following the reproduction tasks, all subjects returned a day later for a second session, in which they were
presented with a surprise memory test (Figure 3A). In this phase, subjects were presented with the same
196 images from the previous day, along with a new set of 196 image foils drawn from the same memorability
bins as the first set. Subjects were presented with each image and asked to judge if they had seen them on
the previous day. A generalized linear mixed model analysis of accuracy scores in this task for each image
replicated the well-known effect of memorability [y?>=72.613, p<0.001], with higher memorability scores
associated with a greater probability of recall [§=5.223, 95% CI: 4.661 — 5.783]. Crucially, the inclusion of
average reproduced duration from the previous day’s session also improved model fit [x?=4.506, p=0.033],
with longer reproduced durations associated with greater recall [3=0.698, 95% CI: 0.061 — 1.335]. We
note that the intervals used represented the average across all objectively presented durations for each
image (see Methods). An interaction between memorability and reproduced duration did not significantly
improve the fit and so was not warranted [x2=0.07, p=0.791] (Figure 3B). Inspection of predicted model fits
additionally yielded an unexpected finding: while longer duration estimates were associated with better recall,
those subjects who overall reproduced longer durations were less likely to recall images in general. This
finding, an example of Simpson’s paradox, was evident when removing subject as a random effect, which thus
changed the beta estimate for duration from a positive value to a negative one [5=-0.698, 95% CI: -0.061 —
-1.335].  One possible explanation for this effect is that longer duration estimates are typically associated
with greater attention to time. It is possible, therefore, that subjects who were able to more effectively
able to ignore the images, and so reproduce longer duration estimates, were thus less effective at encoding
the images into memory; nonetheless, these same subjects were still affected by the intrinsic memorability
of those images, such that more memorable ones, and those reproduced as relatively longer, were relatively
better remembered.
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Figure 3: Perceived duration affects memorability. A) Proposed bidirectional relationship between
memorability and perceived duration, such that more memorable stimuli increase the length of perceived
durations, but longer durations also increase the likelihood of remembering a stimulus. To test this, subjects
performed a time reproduction task with memorability stimuli, and then performed a surprise memory test
on a subsequent day in which they recalled stimuli from the previous day. B) Regression estimates for single
subjects and group average (black line) between memorability of presented images and recall performance
demonstrating greater probability of recall for more memorable images. C) Regression estimates for average
reproduced duration estimates for individual images and recall performance also demonstrating greater
probability of recall for longer reproduced durations.

Neural Network Modeling

How to explain the effect of memorability on time? We assert that appeals to other perceptual phenomena
such as attention or magnitude are insufficient to explain this link. Memorability draws on a variety of details
that give rise to its effect; further, memorable images exist independent of attentional effects (Bainbridge,
2020; Wakeland-Hart et al., 2022), and one would not judge that a more memorable image is higher along
an axis of magnitude like size or quantity. To explain these findings, we turned to computational models
of vision. In particular, convolutional neural network (CNN) models have been a major tool for vision
researchers to measure corresponding links between activation “layers” and corresponding components of
the ventral visual stream. Indeed, CNNs and other model developments (i.e. ResNets) have been quite
successful at estimating memorability and linking them to particular image features at a variety of levels
of the hierarchy. However, CNNs as a base model cannot provide a strong explanation for our findings,
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as these models do not operate over time. A recent advance in CNN models however is to add feedback
connections within and between layers, thus generating recurrent CNN models (rCNN). In these models,
the outputs of individual layers can be “unrolled” across successive timesteps as recurrent, feedforward and
feedback connections (van & Kriegeskorte, 2020). This process thus provides a timescale by which an input
can be successively processed. We note however that the step distance in this case is arbitary; that is, one can
appeal to conduction delays between layers, but without neural data to corroborate the difference between
so-called “engineering” time and “biological” time is irrelevant (Spoerer et al., 2020).

To investigate how computational models of vision might explain our findings, we turned to a rCNN model
known as BLnet (Bottom-up Lateral network), containing seven layers and recurrent connections within
each layer. We chose this network first because it provides a built-in series of time steps (8) for processing
an image, in which a readout is provided with each time step, but more importantly because the output of
this network has been shown to correlate with human reaction times for image classification (Spoerer et al.,
2020), as well as rapid object recognition (Sorensen et al., 2023). This is achieved by extracting the softmax
readout at each of the eight timesteps and then calculating the entropy of each readout. As the model will
converge on a set of image categories over others with repeated recurrent steps, the entropy of the softmax
distribution will decrease with successive timesteps. By selecting a threshold for entropy, one can infer the
model’s “reaction time” to a particular stimulus.

To begin, we fed the 196 images presented to subjects in Experiments 3 and 4 into BLnet and calculated the
entropy across the eight timesteps. These responses were then binned by their memorability ratings. As
in previous studies, we observed that the entropy decreased across timesteps; notably, we observed that
this decrease was logarithmic in nature. Strikingly, we observed that memorability affected the rate of this
decrease, such that more memorable images decreased at a faster rate then less memorable ones [timestep x
memorability interaction F'(1,194)=4.487, p=0.035] An interpretation of this finding is that images that are
more memorable are processed faster than those that are less memorable, with the network converging on a
set of categorizations more consistently over time. One possibility, then, is that longer perceived durations
are the result of this faster speed with which the network operates are more memorable images. To determine
if this was the case, we set an entropy threshold and categorized, for each timestep and each image, that an
entropy value above this threshold would categorize the stimulus as “short” and a value below it would be
categorized as “long”. The average proportion of “long” responses was then calculated for each memorability
bin, thus providing seven psychometric functions which were fit in the same manner as Experiment 3 (see
Methods). We then fit these functions to the subject data by finding the entropy threshold which provided
the best match for both the bias and precision effects we observed. Remarkably, we found that the model
recapitulated both of the observed effects in humans, with higher memorability images associated with a
greater probability of categorizing a stimulus as “long” and also a steeper - more precise - psychometric
function. To the former effect, longer perceived durations were a direct result of the faster speed with
which the network converged on a solution, such that the entropy threshold was hit earlier in time. To the
latter effect, the increase in precision was also due to the speed at which the network converged, such that
the a smaller proportion of the range of possible entropy values for a more memorable images overlapped
with the entropy threshold, an observation that we note is similar to accumulator-based models of time
perception (Allman et al., 2014).
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Figure 4: Neural network modeling of memorability and time. A) Schematic layers used for a
recurrent convolutional neural network (rCNN), BLnet. Images are fed and processed across the network
in a feedforward manner but with lateral recurrent steps for each layer, such that the input to each layer is
refined at successive steps. At the final layer, a softmax readout provides classification probabilities for each
timestep (eight timesteps used). For each readout, Shannon entropy is calculated, resulting in a timeseries
of entropy values. B) The Memorability images used in Experiments 3 and 4 were fed into BLnet, from
which entropy values were averaged across each memorability bin, thus revealing that images with higher
memorabilities exhibited faster reductions in entropy. Setting a threshold on these entropy values allowed
us to construct a psychometric function for categorizing time intervals (for arbitrary time steps) as short
or long. The dashed line represents the entropy threshold after fitting the model to human participant
choices. C) Resulting psychometric functions for the entropy threshold and for each memorability bin. The
psychometric data recapitulated both the time dilation effect for more memorable images, as well as the
increase in precision.

Discussion

The results of the preceding experiments demonstrate that higher-order semantic features of scenes can
shape perceived time. These features include aspects of scenes relevant for navigation, including scene
clutter and size, as well as the intrinsic feature of image memorability. Further, the results show that
this effect is bidirectional, such that changes in perceived time have relevance to the perception of those
stimuli themselves, such that subjectively longer perceived intervals are more likely to be recalled. These
effects point to a series of loci along the ventral visual stream for compressing and dilating subjective
time. Combined with our application of a model of the visual system, these effects suggest that the source
of changes in perceived time are the result of processing efficiency for those natural images, which occurs as
a result of recurrent, feedback connections within visual circuits.
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Scene Features and Perceived Time

The first two experiments conducted demonstrate opposite directions for the image scene qualities of size
and clutter on perceived time, such that the former dilates and the latter compresses perceived time. No-
tably, these findings stand in opposition to a number of explanations for time dilation phenomena. For
example, magnitude accounts would predict that both scene size and clutter should produce time dilation ef-
fects. Indeed, the perception of clutter is akin to numerosity, where time dilation effects have been observed
in response to large dot arrays (Bueti & Walsh, 2009). Likewise, appeals to increases in arousal, attention,
or neural response to the stimuli would all suggest that both scene size and clutter should increase perceived
duration (Matthews & Meck, 2016). The most similar finding to the present one is a brief report noting
that paintings of increasing complexity, defined using low-level features such as edges and contrast, also lead
to time compression (Cardaci et al., 2009); yet this study presented images for very long intervals (730-60s),
whereas the present study employed very brief durations all less than one second. One possibility may relate
to the stability of these images across the visual hierarchy. Indeed, while scene clutter is known to peak
earlier in decodability of neural responses than scene size, it has also been shown that increases in clutter
impair object recognition (Manassi & Whitney, 2018), which may relate to how consistent these representa-
tions are in visual responses (Martin et al., 2017; Graumann et al., 2022; Park et al., 2015). Recent work
has also shown that increases in the objective time of presented images leads to more stable representations,
rather than extended firing rates, in higher-level parts of the ventral stream (Vishne et al., 2023).

A second possibility for explaining the size/clutter effects relates to their actionability. That is, the clutter
or size of a scene are both relevant features for navigation (Learmonth et al., 2002), and recent work has
shown that humans extract information about a presented scene in a way that supports their movement
through that space (Bonner & Epstein, 2017). Indeed, prior work has also demonstrated differentiated
neural representations for scenes depending on whether the objects presented in that scene are reachable or
not (Josephs & Konkle, 2020). Increases in the size of a scene would suggest a longer necessary path to
traverse the space presented, and previous work has shown that larger presented distances dilate perceived
time (Riemer et al., 2018). Similarly, a more cluttered scene would suggest more difficulty in reaching ones
goal. Yet, this would predict an interaction between scene size and clutter, which was not observed.

Memorability and Perceived Time

The last two experiments demonstrated that the memorability of a scene dilates the perceived duration for
which it was presented. Likewise, increases in the perceived duration of a scene also increase its memorability.
These findings go beyond a simple unidirectional explanation, in which the perceptual feature affects its
perceived duration as a byproduct of its processing. Indeed, memorability has been demonstrated as a
perceptual feature of a stimulus related to processing in higher regions of the ventral stream such as the
inferotemporal (IT) cortex (Rust & Mehrpour, 2020; Jaegle et al., 2019). Similar to our findings, recent work
has shown that increasing either the objective or subjective size of an image also increases its memorability
(Masarwa et al., 2022; Jeong, 2023). These findings are suggested to relate to the size and spread of
activation resulting from larger images on the surface of striate and extrastriate regions (Pooresmaeili et al.,
2013). Comparatively, longer objective durations are also known to increase the memorability of an image
(Potter & Levy, 1969; Potter, 2012; Wichmann et al., 2002). Yet, in our findings, we also observed that
the durations of more memorable images were perceived with greater precision. That is, a more memorable
image is both perceived as longer and more consistent. This second finding sets memorability effects apart
from other time dilation effects, which commonly do not change precision, but also points to differences in
the stability of the neural representation.

The finding that memorability and time both affect one another suggests a single underlying factor driving
both effects.  Yet, more generally, why should time dilation effects occur at all?  Up until now, the
dominant framework asserts that time dilation results from increases in attention, or population neuronal
responses. Either case relies on a more is more connection, where increases in attention or firing rate
lead to longer perceived durations. Crucially, there is a directional link to this framework, where time
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dilation is a consequence of increased neuronal firing, rather than a cause. The result is that time dilation
is an epiphenomenon operating downstream from neuronal computations for stimulus coding (Noguchi &
Kakigi, 2006). However, an alternative framework that we propose here is that time dilation effects may
instead serve a purpose for the visual system. Under this new framework, we propose that time in the brain
serves as an information seeking strategy (Matthews & Meck, 2016). This new framework connects to the
recent notion of priority coding in the visual system (Rust & Cohen, 2022), wherein stimuli are processed
according to the priority they engender (e.g., threatening/emotional /rewarding/appetitive/etc.). Yet, under
the priority coding framework, the processing of visual stimuli is limited by an information bottleneck that is
time-limited (i.e. only so much information can be processed at once; (Rust & Palmer, 2021)). To surmount
this, we suggest that the information bottleneck can be dynamically changed to accommodate higher priority
stimuli. In this way, time is dilated or compressed in order to increase the amount of information that can
be processed in any given instance, and so time is not epiphenomenal, but central to population coding. We
note that versions of an adaptive temporal window have been proposed before (e.g. (White, 2017; Pereira et
al., 2022)), yet not comprehensively explored across the visual hierarchy.

The notion of changes in information processing related to time has other experimental evidence to support
it. For example, humans are able to adjust the rate of evidence accumulation to the rate of stimulus
presentations in a dynamic environment (Ossmy et al., 2013). Likewise, recent work has shown that
humans can vary the encoding speed of visual items in working memory, depending on the duration at which
items are presented (de et al., 2023). These findings provide further support to the notion that time is a
controllable feature of visual processing. In support of this, our application of a rCNN model provides an
avenue by which time dilation effects may occur. In this model, the responses at each layer are both fed
forward to subsequent layers and laterally back to themselves. This process, in which a CNN is “unrolled” in
time, allows for image processing to occur across multiple timesteps (Spoerer et al., 2020; Kietzmann et al.,
2019), which are meant to mimic both the feedforward “sweep” of the visual hierarchy as well as recurrent
connections (Lamme & Roelfsema, 2000; van & Kriegeskorte, 2020).  Critically, for image processing,
this allows image representations to be refined over time as the model converges on a set of solutions (i.e.
the probability distribution of object identities). Here, we observed that more memorable images were
processed faster across successive timesteps in the rCNN, such that the probability distribution converged
earlier in time. By applying a threshold to the timeseries and using this to mimic the decision process in
a categorization task, we found that the model could replicate both the time dilation and precision effects
observed in behavior for memorability. Time dilation thus results from a faster speed of the network, rather
than an increase in neural firing; likewise, faster speeds are associated with less variability, and so this leads to
greater precision for categorizing time intervals. This finding mirrors recent neural recordings in nonhuman
primates, as well as modeling with with RNNs, demonstrating that perceived duration is the result of changes
in the speed of neural trajectories through state space (Goudar & Buonomano, 2018; Bi & Zhou, 2020; Wang
et al., 2018). In our case, the change in speed is the result of changes in processing across layers of the
ventral stream, rather than within any given region, a finding that will need to be tested experimentally.

Conclusion

The results of the experiments outlined here provide evidence for a link between the perception of time and
the semantic features of scenes. Further, they indicate a bidirectional effect between memorability and
perceived duration. These results point to a framework in which time dilation is both the result and the
cause of priority coding in the visual system, which is verified by computational modeling of the ventral
visual stream. We suggest that a large variety of visual stimuli may be used to explore timing responses
across different levels of the hierarchy, including those associated with reachable objects, animacy, sizes,
textures, metamers, and forms, all of which can provide insight to the location of time dilation effects across
the visual system.
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Methods

Participants: A total of 170 participants took part in the four experiments described in this study. No
subjects participated in more than one experiment. All subjects were drawn from the undergraduate pool
of George Mason University and took part for course credit. All subjects provided informed consent and
all procedures were approved by the Institutional Review Board at George Mason University. Experiments
1-3 were run online during the Covid-19 pandemic, whereas Experiment 4 was run in-person after pandemic
protocols had been eased for data collection. All subjects were right-handed and neurologically healthy
with normal or corrected-to-normal vision. Experiment 1 included 52 subjects, Experiment 2 included
50 subjects, Experiment 3 included 48 subjects, and Experiment 4 included 21 subjects. All experiments
were programmed using Psychopy (www.psychopy.org). Ounline experiments were conducted using the
Pavlovia platform (www.pavlovia.org). In-person experiments were conducted in a testing room with stimuli
presented on a 100Hz Dell Gaming Monitor and responses collected on a Corsair MX Gaming Keyboard with
a 1000Hz polling rate. For all experiments below, subjects were not informed to the nature of the images
they were presented, and were not given any instructions related to their processing. Rather, subjects were
only told to attend to the duration for which they were presented, regardless of their content.

Ezxperiments 1 & 2: Temporal Categorization of Scene Size and Clutter. All subjects performed
a visual temporal categorization task (also referred to as a time bisection task) with sub-second stimuli. The
stimuli consisted of images drawn from the Size/Clutter database of (Park et al., 2015), which is available
at https://konklab.fas.harvard.edu/#. A total of 252 images were chosen from across the dataset,
which spans six levels of “size” and “clutter”, based on participant ratings. For Experiment 1, we used
the images as provided from the Size/Clutter database; for Experiment 2, all images were processed via the
SHINE toolbox (Willenbockel et al., 2010), in which the images were turned to grayscale and normalized for
luminance. At the start of each trial, participants were presented with a fixation point that appeared at
the center of the screen for 500 ms before immediately presenting a visual stimulus. The stimuli order was
randomized for each trial and images appeared for one of six logarithmically-spaced time intervals ranging
from 300 to 900 milliseconds. Logarithmic spacing allows for more supra-geometric spread when visualizing
the data (Kopec & Brody, 2010). Accordingly, each image was presented once for each of the six possible
durations, leading to a total of 1512 trials in a given session. A break was implemented every 168 trials,
which subjects could end by pressing a response key. The image size was set to (0.5)? height of the monitor,
following recommendations for presenting stimuli for online experiments to account for differing screen sizes
across subjects. On a given trial, participants were tasked with judging whether the stimulus presented
was “short” or “long” based on their subjective threshold of the durations. They were directed to respond
as quickly and accurately as possible using the “s” key for “short” and the “1” key for “long”. There was no
response screen following the stimulus, participants were simply instructed to answer as soon as the image
disappeared. They did not receive feedback during this task and the next trial began upon their response.

Analysis: Subject responses were entered in a generalized linear mixed model (GLMM), with stimulus
duration and the magnitude of the size or clutter of each image as fixed effects and subject as a random
effect. Trials were filtered based on reaction times; we set limits for trialwise RTs to be above 100ms and
below 1s. We chose this threshold, rather than a distributional one, to reflect the potentially wider range
of RTs resulting from collecting data online. For the GLMM analysis, model comparisons were carried out
via Chi Square tests of model complexity. Fixed effects were measured using the likelihood ratio tests.

Ezxperiment 3: Temporal Categorization of Memorability Images. All subjects performed the
temporal categorization task as described for Experiment 1, but with a different set of images. Specifically,
we drew a set of images from the Large-Scale Image Memorability Dataset (LaMem; http://memorability.
csail.mit.edu/index.html). This dataset contains 60,000 images from a number of distinct sources,
each with a corresponding memorability score, reflecting the probability that the image will be recalled
later (Khosla et al., 2015). 28 images were randomly sampled from each of seven equally spaced memorability
‘bins’, or ranges of memorability scores [Abin ~ 0.10390; Bin 1 = 1 - .89610, Bin 2 = .89610 - .79220, Bin 3
= .79220 -.68831, Bin 4 = .68831 - .58441, Bin 5 = .58441 - .48051, Bin 6 = .48051 - .37662, Bin 7 = .37662 -
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.27273]. Within each bin there was uniform spacing among the scores, ensuring an overall spread across the
selected images. The memorability scores were taken from the 2nd training step provided within the LaMem
files. This resulted in 196 visual stimuli split among seven different ranges of memorabilities. Additionally,
we included here seven possible durations, again log-spaced between 300 and 900ms; this was done to allow
for better characterization of the psychometric function for use with fitting routines described below. The
combination of seven different memorability ranges and seven possible durations created a total of 42
possible conditions across 196 trials. Every image was seen at all seven durations, resulting in a total of
1372 trials, which was divided into seven blocks to allow participants a break. Thus, each block was about
six minutes making the full experiment 45 minutes.

Analysis: Psychometric functions for each memorability bin were fit using psignifit 4.0 (Schiitt et al.,
2016). All data were fit using a right-tailed Gumbel distribution to account for the log-spaced nature
of the tested intervals, from which the bisection point (BP) and coefficient of variation (CV) were calcula-
ted. The BP was determined as the 0.5 point on the curve for categorizing stimuli as long, whereas the CV
was defined as half the difference between 0.75 and 0.25 points on the function divided by the BP. As an
additional step, we removed any subjects with a BP value that exceeded the tested intervals in the stimulus
set or a CV greater than 0.5. Using this conservative threshold, 24 subjects were removed from the analysis.

Ezxperiment 4: Temporal Reproduction and Recall of Memorability Images. Experiment 4 took
place on two separate yet subsequent days. In the first part, subjects performed a duration reproduction
task, in which subjects were shown an image and asked to press and hold a button for the same duration of
time for which the image was shown (Mioni et al., 2014). The same 196 images from the Experiment 3 were
used again for this task. The images were each presented for one of seven possible durations linearly-spaced
from 500 to 1000ms such that each duration was represented four times in each bin. On a given trial, subjects
were first shown a fixation cross for 500ms, then the image for its specified duration, then asked to reproduce
the duration by pressing and holding a response key to match the presented duration. While holding the
button down, participants were shown an unfilled white square of the same size as the images as an aid for
reproducing the duration. All 196 image reproduction events shown to a participant represented 1 block, and
each participant was asked to complete 6 blocks of duration trials, with breaks in between, to finish the first
part of the study. Prior to completing 6 blocks of duration trials, participants were asked to complete 3
practice trials, which were equivalent to a typical duration reproduction trial, but with a white unfilled
square of the same size as the images. After each practice trial, participants were shown the numerical
duration which they reproduced, and the target duration. When they were finished with 3 practice trials,
they were asked to complete the normal trials. Each block of 196 trials took about 10 minutes resulting in
a total experiment time of about 60 minutes.

The second part was conducted in the same room, using the same monitor and keyboard configuration
as the first task. Here, subjects performed a surprise memory recall task, in which they were shown images
and asked whether or not they were shown in the duration reproduction task. Subjects were not informed
that they would perform the memory recall task at the outset of the first session. All 196 images from
the reproduction task were included in the memorability task, with an additional set of 196 images (foils)
selected evenly from the 7 memorability score bins in the same way as the first set. All 392 images were
shuffled and each image was flashed on screen for 1 second, and then subjects were given a choice to press
the ‘y’ key on the keyboard to indicate that they were shown the image in the reproduction task, or the ‘n’
key to indicate that they hadn’t.

Analysis: For the temporal reproduction task, reproduced durations were filtered by removing all trials
greater than 3 standard deviations from the mean for each subject. To examine the link between memorability
and reproduced duration, and because each subject was shown the same 196 images for each of the seven
possible durations, we averaged the reproduced duration for each possible image. A linear mixed model
(LMM) analysis was then run on these reproduced times, with the memorability score for each image as a
fixed effect and subject as a random effect. In contrast, to examine the link between reproduced duration
and memorability, we performed a GLMM analysis of the binary accuracy scores for each image with the
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memorability score for that image and the average reproduced duration as fixed effects and subject as a
random effect.

As an additional analysis, we applied a Bayesian observer-actor model to the data from the temporal re-
production task (De et al., 2021; De et al., 2023). This model, based on the work of Jazayeri and collea-
gues (Jazayeri & Shadlen, 2010; Remington et al., 2018) and available at https://jazlab.org/resources/,
conceives of performance on a time reproduction task as arising from an initial sensory measurement (m)
of the presented interval, modeled as a Gaussian distribution that scales with the size of the presented in-
terval, that is integrated with a uniform prior distribution set to the range of presented intervals to form a
posterior distribution of the interval estimate that is then corrupted by production noise (p), also modeled
as a Gaussian distribution. Model parameters for the measurement and production widths were fit using
Matlab’s fminsearch function for the reproduced durations for each of the seven memorability bins. Model
fits were repeated ten times using a fitting maximum of 3000 iterations; inspection of fitted parameters
indicated good convergence of results.

Neural Network Modeling. To investigate the link between our memorability findings and computational
models of vision, we implemented an artificial neural network (ANN) modeling framework, in which a
comparison between behavior and network responses could be compared (Doerig et al., 2023).

For the computational model, we employed here a recurrent convolutional neural network (rCNN) of the
visual system. This model, termed BLnet (Bottom-up Lateral Network) was designed to mimic recurrent
processing within the ventral visual stream, in which individual layers project back onto themselves (Spoerer
et al., 2020). Critically, this framework entails “unrolling” the model in time, such that with subsequent time
steps in the model, layer-specific activity is fed back onto itself via lateral input. Thus, a single time-step
refers to a single “sweep” of the model. We note that the length of the time-step here is arbitrary; indeed,
the model produces identical results whether the time steps are explicitly or implicitly encoded. Rather, the
model relies on a difference in the stage at which layer-specific outputs are sent via bottom-up and lateral
connections (van & Kriegeskorte, 2020).

Our choice of BLnet in this case was motivated by the demonstration that rCNN models provide a better
match to the sequential and time-varying nature of information flow across the ventral visual stream, as well as
demonstrations that the BLnet architecture can reliably predict human reaction times and accuracy to visual
stimuli (Spoerer et al., 2020; Soérensen et al., 2023). Indeed, CNNs by themselves have no access to temporal
duration; by adding recurrent timesteps, even arbitrary ones, rCNNs can provide outputs that vary as a
function of timstep. Here, we used the BLnet code as provided at https://github.com/cjspoerer/rcnn-
sat. Here, the BLnet model was trained on object recognition using the ImageNet and Ecoset (Mehrer et
al., 2021) databases across eight time steps. At the readout layer, the model provides classification output
in the form of a softmax probability distribution. Crucially, this distribution is provided for each of the
timesteps in the BLnet model, and as a result provides a window into how image classification is refined
over time. More specifically, the softmax distribution converges on a set of image classifications over time,
maximizing their probability while minimizing the probability of other categories. To quantify this, we
calculated the Shannon entropy of the softmax distribution at each timestep, as done in previous work. The
resulting entropy by time response thus quantifies the degree of certainty in the classification over time. By
setting a response threshold on these entropy values, human responses can be predicted.

In the present study, we fed all 196 images from the memorability experiments into BLnet and calculated
the resulting entropy of the eight timesteps for each one. We used the pre-trained weights for Ecoset labels
for the softmax distribution, resulting in a vector of 565 category probabilities for each image; however, we
also found that using ImageNet labels and weights resulted in similar findings. We then compared entropy
values across the seven memorability bins to examine differences in model certainty by memorability. To
compare with human performance we used the model output to set an entropy threshold for classifying
images into duration categories. Specifically, we set an arbitrary threshold and categorized all images as
“long” if the entropy value fell below that threshold and “short” if it fell above it. This process was repeated
at each of the eight timesteps, after which the average proportion of “long” responses was calculated for
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each timestep. To match model performance to human responses, we repeated this process across a range
of entropy scores spanning the largest to smallest entropy value in the dataset. For each threshold, as a
first step, we calculated the average proportion of long responses across all timesteps for each of the seven
memorability bins; a psychometric function was then fit to these data using the same manner as described
for the bisection data of Experiment 3, from which the BP was extracted. A linear regression of the BP
values across memorability bins was then fit and the slope extracted; this step was designed to mimic the
“bias” effect observed in behavioral data; accordingly, a positive slope in the linear regression would indicate
that the average proportion of “long” responses decreased with higher memorability bins (recall that higher
bins indicate lower memorability scores). As a second step, we calculated the slope of a linear regression
of the CV values extracted from those same psychometric functions; this step was designed to mimic the
“precision” effect observed in the behavioral data; here, a positive slope would indicate that the CVs of the
psychometric functions are decreasing with higher memorability bins. From these two values, we found the
single entropy threshold with the lowest slope value for each effect.

References

Minding time in an amodal representational space.. (2009). Philos Trans R Soc Lond B Biol Sci, 364,
1815-1830.

Scalar timing in memory.. (1984). Ann N Y Acad Sci, 423, 52-77.

Prospective and retrospective duration judgments: A meta-analytic review.. (1997). Psychon Bull Rev, 4,
184-197.

Temporal cognition: Connecting subjective time to perception, attention, and memory.. (2016). Psychol
Bull, 142, 865-907.

Attention and the subjective expansion of time.. (2004). Percept Psychophys, 66, 1171-1189.

A theory of magnitude: common cortical metrics of time, space and quantity.. (2003). Trends Cogn Sci, 7,
483-488.

Is subjective duration a signature of coding efficiency?. (2009). Philos Trans R Soc Lond B Biol Sci, 364,
1841-1851.

Perceived time is spatial frequency dependent.. (2011). Vision Res, 51, 1232-1238.
Multiple channels of visual time perception.. (2016). Curr Opin Behav Sci, 8, 131-139.

Stimulus intensity and the perception of duration.. (2011). J Ezp Psychol Hum Percept Perform, 37,
303-313.

Properties of the internal clock: first- and second-order principles of subjective time.. (2014). Annu Rev
Psychol, 65, 743-T71.

Life motion signals lengthen perceived temporal duration.. (2012). Proc Natl Acad Sci U S A, 109, E673-7.
Emotional modulation of interval timing and time perception.. (2016). Neurosci Biobehav Rev, 64, 403-420.
The effect of scene structure on time perception.. (2013). @ J Exp Psychol (Hove), 66, 1639-1652.

Examining visual complexity and its influence on perceived duration.. (2014). J Vis, 14, 3.

15


https://doi.org/10.1101/2023.09.02.556045
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.02.556045; this version posted September 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Observers exploit stochastic models of sensory change to help judge the passage of time.. (2011). Curr Biol,
21, 200-206.

Activity in perceptual classification networks as a basis for human subjective time perception.. (2019). Nat
Commun, 10, 267.

Perception of duration in the parvocellular system.. (2012). Front Integr Neurosci, 6, 14.

Zwaan, R., & Zacks, J. (Eds.). (2019). Perceptual Content Not Physiological Signals, Determines Perceived
Duration When Viewing Dynamic, Natural Scenes. Collabra: Psychology, 5(1). https://doi.org/10.
1525/collabra.234

Attentional vs computational complexity measures in observing paintings. (2009). Spatial Vision, 22(3),
195-209. https://doi.org/10.1163/156856809788313138

Perceptual complexity, rather than valence or arousal accounts for distracter-induced overproductions of
temporal durations.. (2014). Acta Psychol (Amst), 147, 51-59.

Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks.. (2018).
Elife, 7.

Understanding the computation of time using neural network models. (2020). Proceedings of the National
Academy of Sciences, 117(19), 10530-10540. https://doi.org/10.1073/pnas.1921609117

Trial-by-trial predictions of subjective time from human brain activity.. (2022). PLoS Comput Biol, 18,
€1010223.

A Predictive Processing Model of Episodic Memory and Time Perception.. (2022). Neural Comput, 34,
1501-1544.

Perception and Estimation of Time. (1984). Annual Review of Psychology, 85(1), 1-37. https://doi.org/
10.1146/annurev.ps.35.020184.000245

Duration judgment and the experience of change.. (1983). Percept Psychophys, 33, 548-560.

Time, change, and motion: the effects of stimulus movement on temporal perception.. (1995). Percept
Psychophys, 57, 105-116.

Discrete events as units of perceived time.. (2012). J Exp Psychol Hum Percept Perform, 38, 549-554.

Effects of Temporal Features and Order on the Apparent duration of a Visual Stimulus.. (2012). Front
Psychol, 3, 90.

Parametric Coding of the Size and Clutter of Natural Scenes in the Human Brain.. (2015). Cereb Cortex,
25, 1792-1805.

Modeling psychophysical data at the population-level: the generalized linear mixed model.. (2012). J Vis,
12.

Understanding and Predicting Image Memorability at a Large Scale. (2015, December). 2015 IEEE Inter-
national Conference on Computer Vision (ICCV). https://doi.org/10.1109/iccv.2015.275

Understanding Image Memorability.. (2020). Trends Cogn Sci, 24, 557-568.
Recognition memory for a rapid sequence of pictures.. (1969). J Exp Psychol, 81, 10-15.
Recognition and memory for briefly presented scenes.. (2012). Front Psychol, 3, 32.

The contributions of color to recognition memory for natural scenes.. (2002). J Exp Psychol Learn Mem
Cogn, 28, 509-520.

Temporal context calibrates interval timing.. (2010). Nat Neurosci, 13, 1020-1026.

16


https://doi.org/10.1525/collabra.234
https://doi.org/10.1525/collabra.234
https://doi.org/10.1163/156856809788313138
https://doi.org/10.1073/pnas.1921609117
https://doi.org/10.1146/annurev.ps.35.020184.000245
https://doi.org/10.1146/annurev.ps.35.020184.000245
https://doi.org/10.1109/iccv.2015.275
https://doi.org/10.1101/2023.09.02.556045
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.02.556045; this version posted September 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Late Bayesian inference in mental transformations.. (2018). Nat Commun, 9, 4419.
Slowing the body slows down time perception.. (2021). Elife, 10.

The role of consciously timed movements in shaping and improving auditory timing.. (2023). Proc Biol Sci,
290, 20222060.

The resiliency of image memorability: A predictor of memory separate from attention and priming.. (2020).
Neuropsychologia, 141, 107408.

Predicting visual memory across images and within individuals.. (2022). Cognition, 227, 105201.

Going in circles is the way forward: the role of recurrence in visual inference.. (2020). Curr Opin Neurobiol,
65, 176-193.

Recurrent neural networks can explain flexible trading of speed and accuracy in biological vision.. (2020).
PLoS Comput Biol, 16, e1008215.

Mechanisms of human dynamic object recognition revealed by sequential deep neural networks.. (2023).
PLoS Comput Biol, 19, €1011169.

The parietal cortex and the representation of time, space, number and other magnitudes.. (2009). Philos
Trans R Soc Lond B Biol Sci, 364, 1831-1840.

Multi-level Crowding and the Paradox of Object Recognition in Clutter.. (2018). Curr Biol, 28, R127-R133.

Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural
networks.. (2017). Neuroimage, 153, 346-358.

The spatiotemporal neural dynamics of object location representations in the human brain.. (2022). Nat
Hum Behav, 6, 796-811.

Distinct ventral stream and prefrontal cortex representational dynamics during sustained conscious visual
perception.. (2023). Cell Rep, 42, 112752.

Children’s use of landmarks: implications for modularity theory.. (2002). Psychol Sci, 13, 337-341.

Coding of navigational affordances in the human visual system.. (2017). Proc Natl Acad Sci U S A, 114,
4793-4798.

Large-scale dissociations between views of objects, scenes, and reachable-scale environments in visual cortex..
(2020). Proc Natl Acad Sci U S A, 117, 29354-29362.

On the (a)symmetry between the perception of time and space in large-scale environments.. (2018). Hip-
pocampus, 28, 539-548.

Population response magnitude variation in inferotemporal cortex predicts image memorability.. (2019).
Elife, 8.

Larger images are better remembered during naturalistic encoding.. (2022). Proc Natl Acad Sci U S A, 119.
Perceived image size modulates visual memory.. (2023). Psychon Bull Rev.

Blood oxygen level-dependent activation of the primary visual cortex predicts size adaptation illusion..
(2013). J Neurosci, 33, 15999-16008.

Time representations can be made from nontemporal information in the brain: an MEG study.. (2006).
Cereb Cortex, 16, 1797-1808.

Priority coding in the visual system.. (2022). Nat Rev Neurosci, 23, 376-388.
Remembering the Past to See the Future.. (2021). Annu Rev Vis Sci, 7, 349-365.

17


https://doi.org/10.1101/2023.09.02.556045
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.02.556045; this version posted September 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The three-second subjective present: A critical review and a new proposal.. (2017). Psychol Bull, 143,
735-756.

A leaky evidence accumulation process for perceptual experience.. (2022). Trends Cogn Sci, 26, 451-461.

The timescale of perceptual evidence integration can be adapted to the environment.. (2013). Curr Biol,
23, 981-986.

Adaptive Encoding Speed in Working Memory.. (2023). Psychol Sci, 34, 822-833.

Recurrence is required to capture the representational dynamics of the human visual system.. (2019). Proc
Natl Acad Sci U S A, 116, 21854-21863.

The distinet modes of vision offered by feedforward and recurrent processing.. (2000). Trends Neurosci, 23,
571-579.

Flexible timing by temporal scaling of cortical responses.. (2018). Nat Neurosci, 21, 102-110.
Controlling low-level image properties: the SHINE toolbox.. (2010). Behav Res Methods, 42, 671-684.
Human performance on the temporal bisection task.. (2010). Brain Cogn, 74, 262-272.

Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data..
(2016). Vision Res, 122, 105-123.

Different methods for reproducing time, different results.. (2014). Atten Percept Psychophys, 76, 675—681.
The neuroconnectionist research programme.. (2023). Nat Rev Neurosci, 24, 431-450.

An ecologically motivated image dataset for deep learning yields better models of human vision.. (2021).
Proc Natl Acad Sci U S A, 118.

18


https://doi.org/10.1101/2023.09.02.556045
http://creativecommons.org/licenses/by-nc-nd/4.0/

